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PREFACE

This dotument presents a series of papers describing issues'in edu-

cational measurement. The first, paper, "A Simple+lodel for Diagnostic

Testing When There Are Several Types of Misinformation,"Airectly addresses

the diagnost*.:Assue. It describes a simple latent trap model for-testing,

examines use of erroneous algorithms, and illustrates the derivation-of an

optimarscoring rule fo'r multiple choice test items.

The-second paper, "MeaSuring Mental Abilities with Latent State Models,v

haS three'Tials: 1) to review the latent state models that have teen Oro-,

posed for measuring aptitude and achievement; 2) to outline the measurement

problems that can now be solvdd with latent state mode?-al-a? A 3) to discuss
q

howlatent state and latent trait models are related.

the third paper, "Strong True Score Theory," reviews true score models

in light of various assumptions, about guessing. It is an invited, paper to
--0

eg,appear in an encyclopedia fdy. statistics.

The fourth paper, "Approximating Multivariate Distributions', " suggests

a simple approximation of multivariate distributions. The suggested method

is compared with several other approkimOions.. These comparisons indicate

that the new apprOximatiop nearly always gives better results.

The final paper,:"Uribiased Estimation in aClosed Sequential.Testing

Procedure" provides an optimal linear estimator of the proportion of items

within an item-domain that an examinee would anwer correctly,if every item

were attempted.
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ABSTRACT

.In diagnostic testing one purpose of a test' might be:to determine

whether an examinee hays acquired the appropriate skillsfor solving

certain types of problems, or whether the examinee is using an erroneous

algorithm. In the latter case it is also desired to deterMinCwhich of

several erroneous algorithms is being used so that remedial training can.

be given. Birenbaum and Tatsuoka (1982) recently illustrated that when

testing eighth gradei-s on the addition of signed numbers, examinees might.

indeed be applying one of several erroneous algorithms, and More recently

they reported results on a scoring procedure for this situation. This

.paper describes a simple latent class model for handling the items.in

Birenbaum and Tatsuoka; included fs a description ,and.illithtration of

how to derive the optimal scoring rule when multiple .choice test items

are used.



Birenbaum and Tatsuoka. (.1982) provide an interesting example of the

-need to measure and classify examinees according, to the type of misinfor-

mation they'have relative to a particular skill. They were specifically

concerned with testing the addition df signed numbers,., but it is evident

that problems occur in many.situations. As Birenbaum and Tatsuoka

point but, examinees might be using one of several erroneous algorithms

when responding to these items. They described three algortthms that

were actually gsed by examinees, and since they play an important role

here; they are briefly reviewed.
o

The first erroneous algorithm was treating parenthetes'as -meaning

absOlute value. ThUs 7 +( -3) would result in an-answer:of 10. The econd

aTgorith was.to.add the two numbers and take the sign of the number hav-
N

.ing the 1 rgest absolute value. For example, if asked' to compute 3+ -7,
A .

the examineeads 3 and 7,,and because 7>3, a negative sign is added yield-
..,

ing -10.. The third erroneous algorithm was to addthe two numbers when

they had different signs, and to put a plus*sign in the result. For example,

3+ -7=10 according to thi't rule. If the two numbers have the same sign,

the student takes their differencd and puts the common sign in the result.

For example, (-8) +(-.4) =74. This last algorithm resulted from the student

misunderstanding hoW to use the number line as 4t was explained by the

teacher. Table 1, taken from BirenbaGm and Tatsuoka (1982) shows several

addition problems and the results arrived at according to the three erron-

eous algorithms just described. Note that different algorithms can'yield

the same answer, and in some cases even the correct response.
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Birenbaum and Tatsuoka (1962, 1983) argue for the need to measure

misinformation and to determine the type of miiinfOrmation that a student

has. In their more recent article (Birenbaum & Tatsuoka, 1983), they

compared two scoring algorithms for measuring misinformation, but no results

were given on determining the accuracy of either procedure,and indeed

neither procedure was developed with-the goal of finding the optimal scor-

ing procedure for identifyingLw e an erroneous algorithm is being used.

(They compared coefficient alpha for the two scoring procedures, but this

is not a direct measure of the accuracy of the test as it is defined below.),

The goal in this paper is to illustrate how an optimal scoring pro-

cedure can be _derived for the situation considered in Birenbaum and Tatsuoka

(19$2). As will become-Ldent, the process used for determining the opti-

mal scoring rule can be easily extended to other situations,.but to keep

the illustration as simple as possible, attention will be restricted to the

items in Table 1. An additional/advantage of the results fC be given is

that expressions re also derived for the probability of correctly determth-

/
ing the algorithm being used by an examinee.

.

Befort continuing, ome commentsshould be made regarding results-
:/ \

similar to the developMents 'made here. First, the problem being examined'

is similar to one considered by Macready and Dayton (1977). It ist\ eatiTY

seen though that the latent structure model they used is inappropr\ate for the

problem at hand: Wilcox (1982a) proposed a model for Measuring misinfor-

mation via an answer-until-correct scoring procedure; but this model\is in-

adequate here as welT. The reason is that his model can measure only one,

°

, r

O
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type of misinformation, and here.the problem is contending with three

erroneous algorithms. Dayton and Macready (1980) as well. as .Goodman- (1974)

describe very general latent class medels that could be applied, an& Bergan

et al. (1980)0scT1-6ed an approftiate scoring procedure. However, these

models- require iterative techniques that may be unnecessarily complicated.

In particular, Dayton and Macready's model requires iterative approximations

of the maximum likelihood estimates of t p rameters, and for theoretical

reasons it is best to avoid these estimatiok techniques whenever r:Jssible

(Kale, 1962a; 1962b).. The problem is. determining whether iterative esti-
.,

malion procedures converge to the maximum likelihood estimates that they

are intended to approximate: It appears that they usually do, but. there is

no guarantee that this will always be the case. (For a situation where

iterative techniques can converge to inappropriate values, see Wilcox, 1979.)
°

Thus, an important aspect of this paper is that by making certain assumptions

about how examinees behave-when taking test items, which are motivated

by a published empirical study described below, a relatively simple.model

results where explicit maximum likelihood estimates_of the parameters are

, available, and these estimates can' be used to solve the measurement p.rob-
i.

lems described above.

2:- The Model .and Its Assumptions

a

It is assumed that multiple-choice test items are used, and that every

item has t alternatqes. This last assumption is made prirdarily for notational

convenience. Using multiple choice items introduces. the'problem of_guess-
.

trig, but this seems to be easier to handle, from astatistical point-of view,.



.
than is the problem of careless errors which is one Of the erroneous

algorithms-also considered by Birenbaum.and Tatsuoka (1982). Here it

- is assumed that careless errors occur with probability close to zero

so that for practical purposes this errOr.Can be ignored. As, explained

in the introduction, only the three erronebus.algorithms in Birenbaum and

Tatsuoka will be considered, plus, of course, the algorithm 'of random .

guessing. Thus, for the population of examinees to be tested, it is

assumed that every examinee belongs 'CO-One of five mutually'exclusive

.\

latent states: they know how to solve the items, they guess at random,

or they apply -one of the three incorrect algorithms.described above1. It

is also assumed that if an examinee is\using LA-e correct algorithm the

correct response is always chosen, and if one of the three erroneous al=

gorithms is used, an examinee will always choose a corresponding response.

For comments about this last umption, see section 6. For the moment

1

it is also assumed that every item tias a di tractor that is consistent

with each of the erroneous algorithms. This restriction could be relaxed,

if desii.ed, when applying the procedure outl, ed in

section 5. 'Another assumption is that there are no examinees who have,

partial Information: Although empirical result's Andicate that partial

information_exists_in_some sttuations (e!g Coombs et al. 1956), there

is also some empirical evidence that when dealihT with misinformation,

may be reasonable to assume that no examinees have partial information

(Wilcox, 1982a). ,It .is not being suggested that' this assumption be taken .

for granted, only that it might be reasonable in practice--section 4 dis-
v

0

10



cusses how certain impllpations of the-model can be tested, and this test

should always be carried oirt.

The next step is.to find n items that make it possible to distinguish

between anal) two examinees having a different erroneous algorithm. In

addition, these items should include at least one item that will result

in at least one incorrect response when an erroneous algorithm is being

used. These last two conditions are clearly satisfied for the items in

Table 1. In fact only the first. :items are needed.
, e

'Let a 1 and 0 represent a correct and incorrect response to an item,
_

.respectively. Consider an examinee responding to the'firist three items

in Table 1., If the' first erroneous algorithm is used, the resulting re-
/

sponse pattern will be (1,0,1). For the second erroneous-algorithm, the

response pattern will be (0,0,1), and.the third erroneous, algorithm will

give (0,0,0). Thus, if an examinee has response pattern (1,0,1), for

example, the assumptions of.the.model rule out the possibility that the

examinee is using one of the other two erroneous argdrithms, and so the

examinee is either applying the First erroneous algorithm or is guessing)

at random.

Two practical problems will be considered. The first is estimating

the proportions of eXaminees among a population of examinees who belong

to the various latent states. The, second problem WdistingUithing be-

tween those examinees who are guessing at random,' and those belonging to

one of the four other latent classes. As will become 'evident, a solution

to.the first problem can be useful when solving the second:,

1.1
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Let be the proportion of examinees who know the correct algorithm,

and let (i=1,2,3)be the propOrtion who are using ttie ith erroneous

algorithm. Finally, let bp the proportion of examinees who guess at.,

random, and let pijk Ci=1,1; j=0,1; k=0,1) be the probability that a ran-

domly sampled examinee would give the response pattern (i,j,k). For, ex-

' P101
ample is the probability that a randomly sampled examinee would,

give a correct, incorrect and correct response to the first three items

in Table 1. From the assumptions already described, it follows that

13111 14(1/t)3

1101

1001: 4C1it)(1"'1lt)2+9

13

p000 =.4(14.1/t)34:3

P.110=13011=
.4(1/t)2(1".1)t)

1100=1:1010
4(1/t)(1".1/t)2

(2.1)

(2.2)

(2.3)

(2.4)

(2.5a)

(2,5b),

For N randomly sampled examinees, let x.fik be the number ofoexaminees

having response pattern(i,j,k), and let, qi be the common value of P110=101]

and let q
1 100

be the common value of p =p . From standard 're-
.

--2 .100 010 100 010
_-

_sults on the multinomial distribution in conjunction with results in Zehna

(1966) sq = (x1104-x011 )/2N and a.2( =-x100+x010
)/2N are maximum likelihood

estimates of ql and q2. It follows that maximum likelihood estimates. of

t-

and are

4.61010- (1-1/t)-12(1/t)-1(1-1/t)-1)/2
/---

/ (2.6)

12



and

c hoosing responses At random; the prOblem iS determining which is true.

The simplest'solution is to examine the probability of observing the re-
-

0

Sponse pattern (1,1,1) if the examinee is guessing at random; this is just

t , assuming the responses, ar- gle ependent of one. another. If t
-3

is-small,

IX111/N-

/N 1/) 241 1"101- - c 4
(1 t /t

2 x001114 L1(1-4/t)

2

it

^ \

3 )C.0001"im
LI(1-1/tl

. .

Making Decisions Abdut'an Examinee's Latent State

1,

(2.10)

. Suppose an examinee gives the response pattern (1,1,1). Then accord-
-

ing,to the model, the examinee is either using jje correct algorithwor

it might be decided that the examinee is no essing, but this approach

can be unsatisfactory. To illustrate why, suppose =l. Then the optimal

"scoring rule would be to always' decide an examinee does not know-;--and to

conclude therefore that an examinee is guessing at random when the response

patterm`(1,1,1) is given.:

The question arises as to whether the optimal rule for is also

optil When >0, and if so, how far awayfrom zero cane be before some

other rule should be-used. There isalso the problem of determining the

overall accuracy of the decision rule being used. A solution to the first

problem'is to decide an examinee-is using the correct algorithm if and
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only if the response" pattern (1,1,1 ) ts given and

44
tp

3. (2.11)

This rule is derived by noting that the joint probability Of randomly

sampling an examinee who guesses at random and who gives the response

( 1 , 1 , 1 ) i s just At
3

. Also, the joint probability.of sampling an examinee

who knows and who gives the response pattern (1,1,1) is Thus, if

.< 4t-3, decide the examinee is guessing at random. Optimal properties ,o

this decision rule (given in a more general context) are described by

Copas (1974). #
0

A similar approach can be Used to derive decision rules for determin-
,

ing Whether an examinee is using'a particular erroneous algorithm. ".Suppose,

for example, the response (1,0,1) is. given. Then according_to the model,

the examinee-either is using the firsterroneous"algorithm, or is guessing

at random. The-\optimal rule is to decide the examinee is using th,ferron;-

eous algorithm if and only if

41>4[t-2(1-t-1)3.
(2.12)

Where/t-2(171/t) is the prObability of the response pattern (1,0,1) from an' ,

IL
.

examinee guessing at random. Thus, this is the same rule as (2.11) except
1.

that! hag been replaced by7",,and t
3
has been replaced by the probability-

of the response pattern (1,0,1) from an examinee guessing at random. Similar

modifications Are made-for the Other two response "patterns corresponding to

the oher two erroneous algorithms.. As for the response patterns correspond-
\

ing.toequationsTL-(2-;.25)-,-slinply-deaide-the-exam4-nee-i-s-guessing at random:



Extensions to n Item Tests Having Latent States

-' .

The basic process-used to analyze-the
/

first three items in Tablt 1
,/'.

is easily extended to nitem-itests2involving k latent states. Consider

any' response pattern A where.A-is a vector of l'S and-O's. Let Ck be the

joint probability of observing A,and having an examinee im the kth latent

!tate, k=1,...,K. Then decide that an examinee is in the ith latent,state

if Ci=max bk. Another illutratian is given-in'section 5. As already

mentioned, when trying to classify an examinee as belonging to one

of two latent states, this-rule is known to have certain optimWprop-
.

erties (Copas, 1974).. If an examinee giving response A can belong

to more than two latent classes, the rule used here is the same as

1 the one used by Bergan et al. (1980), but the optimal properties

digcussed by Copas (1974) have not been established.

-3. The Probability of a Correct Decision

RetUrning to the analysis of the first three items in Table 1, suppose

the procedure in the previous section hat been applied, and that a scoring

rule has been determined. The next prOblem is determining whether there is

a high likelihood of making a correct decision_about the latent st_ate of a

-randomly sampled examinee. If this probability is judged to be too low, the

test might be modified as described below. Again to explicate the process,,

only the K =5. latent states of section 2 will be considered.
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Suppose the decision rule in Table 2 is to be used. Then for a

randomly samplecrekaminee, the probability of a correct decision(PCD)

is just

where

C C1 C2

-2 -1 -1
(

-1 2
B = 2t (1-t )+2t 1-t ) .

4.

Suppose instead that for response pattern (0,0,0) it is deCided an exaffi-

inee is guessing at random. Then (3.1) becomes

4. C1 4. C2 CC4
(3.2)

where C=B;t-3. Similar adjusiments can be made if the decision rule in

(3.1)

Table 2 is modified in any way.

The general, technique in determining an erliression for.the PCD is to

first"derive an expression fortheprobabthat, for an examinee guess-
0

ing at random, the observed response pattern will correspond to one where

the.deciscon,is made that the examinee is'indeed guessing at random. Conr

sider, For example, response pattern (1,1,0). .Given that the examinee is

guessing at random, the probability of this response pattern is

(t-1)(t-1)(1-t-1).. Repeating this process for every response,patfern.for

which it is decided that an examinee is guessing at random and adding the

results yields the coefficient for 4 in the expression for .the PCD. For

- the decision rule in Table,2, there are four such response patterns,end

they.add to B in (3.1). For examinees in the other latent states, the
T.

response pattern is determined with probability one, and so no coefficients

r
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a*"

. .- 1 ,
,-

.)

.

are needed for them in
. ,

(3.1). If the PCD is judged to be too small, ad-
,

k

ditional items or moredistractori can be used, and then the process de-

scribed above is applied again.

4. Comments About Testing,the Model

,

A partial check on the model .in section 2 is to test C2.5)-with the

usual sign test. In the more generi.1 case, fuch as in'section 5 it is

necessary,to test -*pr. equal cell probabilities among several cells, and

- t a 6

. this is usial1y accomplished'with a chi-square test. The purpose of this

section is to make some brief comments about this well kiloWn procedure.

First, exact tests for eqUiprobable-cells canbe made when N, the
. ,

.nuffiber of examinees, is 1 ss thanor equal to 50 (Smith et al., 1979;

,

Katti, 1973). Ln cases where a

.get approximate critical values

of the ,critical values can be had by applying reiults,in Wilcox (1982b).

Second, a practical problem with testing for'equiprObable cells is

chi-square dietribution Must be used to

it appears that a better approximation,

that the n011'hypothestmight,be rejected even, whenthe.Ceq%probabil

ities are nearly ,equal in value.'Af course this is particularly likely

to happen when Nis lar:ge. Accordingly, if the 'chi-squre test is.signtf-

icant, tt would segi,prudent to estimate the overall inequality among

the cell probabilities, and a detailed discuss/on about how this cane

done can be found in Wilcox, ClIff.and Embretsonjto appear

7



An Alternative Approach

.
In some cases-it may be useful, to take into account the. actual

sponse chosen by an examinee rather than:limiting the analysis to the

pattern of correct and incorrect responses. By doing this, fewer items

may be required. in' order to obtainan accurate test.

As an illustration, suppose items 1 and 5 in Table 1 are to be used.

If the obserVed responses are -4 and -32, respectively, the examinee was

-either guessing at random or was using-the currect'algorithm. Thus

,Pr(-4,-32)=0.4(t-1)(t-1). As a more specific,,example, suppose there

are t=3 alternatives for both items 1 and 5,in Table 1. Then

El
Pr( -4, -32) °-4/32

where the symbol g is introduced fornotationat convenience. In a similar

manner the probability of All possible response patterns can be written

in terms of the 's. and they are

E2=Pr(-4,32)=C1+44/9

E-3 = Pr(-4,-14)=4/9

Pr(-10,32)=c4/9

E5 = Pr(-10,-32)=42+c4/9

E5= Pr(-10,-14N4/9-

E7.-'Pr(10,32)=c4/9

E8= Pr(10,-32)=44/9

10,-14N34.c /9
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Observe that g3 = = =, g$, and so the comments in section 4

apply.

Let gi be the;iJsual maximum likelihood'estlmate of g,. Then the

set of equations just given imply that

A ^

44=9(g3+4+ 6+7+g8)/5. _

is a maximum likelihood estimate of 44. Hence

'%

43 g9 44/9

42 g5 44/9

= g
2 44

/9

and

4 1 44/9

are maximum likelihood'estimates of 43, 42, 41 and 4 respectively. Thus,

only two items were needed to estimate the'proportion of examinees in the

five latent states,

Next suppose the 4's are known or that they have been estimated, and

6

that a scoring procedure must be established. Consider, in particular the

response pattern (-4, -32). The joint probability of using the correct

algorithm and giving the response pattern,(-4, -32) is jilst 4. The joint

probability of guessing at random and giving the response pattern (-4, -32)

is c4(t-1).C1-11.= 44/9. Thus,.for the response pattern (-4, -32), if

c>4/9-decide an examinee is usi.ng the correct algorithm.
'

If 4<44/9, de-
,

. gide the examinee is guessing at random. The, important point here is that
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°

,the analysis is basically the same as it was in section 2. Of course the

,other response patterns can be analyzed in the same manner. An expression

for the KO carialst be-determined once a scoring rule has been settled

upon. The details are basiGally the.-same as before, and so further comments

are omitted.

6._ __2.=CohCluding Remarks

In section 2 it was assumed that every item has an alternative that

is consistent with at least one of the algorithms that might be used by

an examinee. It should be noted that if computerized testing is possible,

h.adaptive test could be administered that relaxes this assumption. ,Sup-

pose, for'example, an item is given and that the obserVed response rules

out the possibility that an examinee is using the first erroneous algorithm.

Then, the next item could be chosen based on the assumption that the exam-

inee is not Using this algorithm. That is, the distractors need not in-

- dude an,alternatiye that is consistent with the-gfirst erroneous algorithm.

When Measuring complex skills, this approach could be important.

One of the assumptions of the model was that.there is no carelessness.

That is, if an:-oxaminee is using a particular algorithm to arrive at 'an

answer, the alternative corresponding to this algorithm will always be

chosen. In some cases it might be necessary to include the possibility

that an examinee might carelessly. choose an alternative that is inconsistent

with the algorithm being applied. The models used here are easily extended to

20
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handle is problem, but,iterative estiMates of the parameters would be needed.

One way to solve this estimation problem is to proceed as outlined in

.\ , -1'

Goodman (1979). 01-1ce3fhe parameters' are estimated, a= scoring rule can

-15-'

o

be derived as was outlined above.
.

\
_

Another important ppint is that the scoring rules described here

.

.

# .
are based on\the assumption that the goal is

o

to maximize the number of
. 1

' .

examinees for
\

Whom'a correct decision ismade about their latent state.

This could mean
\

\however, that an examinee could get an item right, and
1

yet it would still be concluded that an erroneous.algorithm was being

used. If this possibility is objectionable, some other scoring rule

should be considered. However, the results given here are still valuable

because they yielda methdd of 'assessing the accuracy 'of a telt,if a con-
,

ventional scoring rule is applied, and the scoring rule described'here-might

be useful when evaluating the effectiveness of.a partiqolar instructional
,

program.

C
.3

cp
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TABLE 1

0.

Problems 'and Responses According tothe Three Erroneous

Algorithms in Birenbaumand Tatsuo0 (1982)

Problem No. n Erroneous Algorithm

1 2 3

1. + -7= -4 -10 10

2. 7+ (73) =4
-

10 10 10

\411, 3. -6 + -15 = - -21 -21 -9

4. -6 + +15 = 9 9 21 21

5. C-23) + (-9) = -32 32 .-32 -14

22
C-N



TABLE 2

. A Decision Rule for the. First Thre.Items in Table

Response Pattern of
Corrects and Incorrects Decision

111 Uses the correct algorithm

1 1 0 Guessing at random

101 Uses the first erroneous algorithm

011- Guessing at random

100 Guessing at random

010. Guessing at random

001 Uses the second erroneous algorithm

000 Uses the third erroneous algorithM

23
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ABSTRACTA.

The three goals in this paper are (1) to'reAew the latent state'

models that have been proposed for measuringEffitade ad rateverient,

(2) to outli e the measurement.problevs that can now be solved with

latent state odels, and (3) to discuss .how latent state and latent

.trait models f are related. It'is pointed out that latenestate and

, latent trait.models measure' ifferent things that are related,to one

another in a complicated fashion.

fi
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1. INTRODUCTION

There are now.four interrelated approaches to measuring aptitude

and achievement that are based on different notions of true scores. Class-
.

ical test theory'is the bes known approach where ability is defined in ,

terms of a propensity d .tribution. The other three are latent trait

models, item sampling modelsand latent state models. No doubt latent

state models are the least well known. One reason for this is that early

models made very restrictive or inconvenient assumption's, and even if

the models could be applied, it was unclear how to'solve the many mea-

surement problems that arise in practice (cf. Meskauskas, 1976).

Today the sit'ation has changed radically, there are now latent state

models'that areelatiyely easy to use, and empirical investigations

dicate that the underlying assumptibns are usually met, or.that they are

reasonable approximations of reality.-. Just as important is that many mea-

surement problems can be solved that were previously impossible to'address.

The three major goals in this.paper are to (1)(review the various latent

state models, (2) describe some of the measurement problems that can now

be solved with.latent state models, and (3) briefly indicate how latent

trait models, item sampling models, and latent class models are related

to one another. The last goal is particularly important becaus6 when there

are errors at the item level such as guessing,,all three models estimate

different quantities that are related to one another in a complicated

fashion. In fact, if a measurement problem Is formulated in.terms of.one

.

model it may be very difficult to find a satisfactory reformulation. of
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the problem in terms of another model. This point is elaborated below.

Accordingly, it is important to consider the-differences among the models

when addressing a particular measurement problem.

It should be stressed that none of the models described below are

4 considered to be always bad or inappropriate. The position advocated here

is that an eclectic approach to measuring mental abilities should be used.

That is, the choice of a true score model should be dictated,_at least in

part, by the goal of the test. or the type of ability being estimated,

All that is being suggested is, that different models are based on differ-
.

ent constructs, and so they estimate different things, which suggests'

that some models may be-inappropriate in some situations, or that several

models might be used to study a test. For example, the type of guessing

examined in latent state models is completely ignored in all other models,

and so if this type'of guessing is deemed important, a latent state model

should be used, There is a widespread belief that the guessing parameter

in latent trait models is the same as the notion of guessing in latent

state models, Out this is not true. In section 6 an attempt is made at

explaining the diffeience.

The paper is organized as follows: Section 2 briefly'reviews the

basic elements oflatent trait models that will be needed in the paper.

Sectfon 3 does the same for item sampling models, and some commeAts are

made-about how these models relate to latent trait models. Section 4

reviews the theoretical developments in latent class-models that are

-specifically intended for measuring aptitude and achievement. Certain
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aspects of these models were reviewed by. Macready and Dayton (1980b)

and so these features wilj,not be discussed here. Sect) 5 describes

applications that can not be addressed by other measurement models.

Included are generalizations of item sampling models. Sect' ton 6 make's

additional comments on how latent trait and latent class models are re-

-fated to one another. In particular, this section discusses the impor-
t.

tance of guessing in latent trait models, and it points out that the

type of guessing examined in latent class models is completely ignored

in latent trait modelseven in Birnbaum's three parameter model.



.

2. Latent Trait Models

Latent trait models are discussed in detail by Birnbaum (1968),

Lord and Novick (1968, ch. 16), Lord (1980), and Hambleton et al. (1978) \

give anexcellent review-of this approach:to mental test theory. See

also, the 1977 special issue of the Journal of Educational Measurement,

Weiss and Davison (1981), and the 1982 special issue of Applied Psycholog-

ical Measurement.

Generally, these models express the probability of an examinee giving

a correct response to an item as a function of an examinee's "ability"

Ind certain item parameters. For example, the Rasch model.Rostu1ates

that p(e), the probability a specific examinee with ability level

e < e <co) will produce the correct response to a dichotomously scored

item, is

p(e) = exp(e - b)/(1 + exp(e - b)) (2.1)

where b''(the difficulty-level) is a parameter that characterizes the iiem.

(See, for example, Wright, 1977; Wainer et al., 1980.)

An alternative expression for p(e) is the two parameter normal

ogive model given by
L

p(e) = I gt)dt (2.2)

where (p(t) is the standard normal probability function L = a(e -b), and

a is the item "level of discrimination". A closely related model is the

two parameter logiitic'model where,

4(e) = (1 + exp(-1.746 b)))-1

(Birnbaiud, 1968,'p. 400). An even more general three,parameter model

is given by,

p(e) c +

(2.3)
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Opre c is the probability of a correct response from an examinee with
nj

low ability. In all of the abov 'Models, the symbols a, b, and c

represent Unknown parameters that areeitimated with the observed scores

of a sample of examinees. A particularV important feature of latent trait

flmodels is that once the item parametersare estimated, it is possible

to construct a test so that the expected observed scores will have

properties that are deemed important.

Numerous articles on latent trait models have been published.

However, as previously indicated, the goal of this paper is not to summarize

these results. For present purposes, the important point is the interpre-
.

tation of p(e). One interpretation is that p is the probability of a

correct response over repeated,independent administrations of the item.

In other,words, p is the examinee's expected observed score, where the

expectation is 'defined An terms of a propensity distribution. However,

- Lord (1980, ch. 15; 1974) argues that this interpretation leads-to certain

logical problems, and so he proposes that one or two other interpretations

be used instead. The first imagines a poolof items all of which have

the same item parameters a, b, and c. Then p(e) is the probability that

a specific examinee with ability e will give the correct response to an-

item randomly Sampled from this item domain. The actual items on a test

will typically have different item parameters, and so each of these items

would beviewed as being sampled from an item domain corresponding to the

value4of a, to, and c-

The second interpretation views examinees, rather than Atems, as

being randomly sampled. For an item with parameters a b, and c. P(0)

is the probability of a correct response fromra randomly sampled examinee

who has ability:level e.
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Some other basic assumptions associated with latent trait models

------,
. ,

sTuld be mentioned. One of-these is the assumption of local independence.--__

This means, that gtven e, responses are ndependent of one another.

Letting pi be the value of p(e) for the ith item:on-a test, .local.in-

dependence means that if items are Scored dichotomously, the-probability

of y items correct given'e is

n x;

f(Yle) = E It Pis (1 P.
i=1 o

(2.5)

'where x. = 1 or 0 according to whether the ith item is answered correctly,

, .

and where the summation is over all vectors (xl, xn) such that EXi = y.

A test of.this assumption was recently proposed,by Holland (1981), but

it has not yet been applied to real data.

Another property of the most commonly used latent trait models is

that they are unidimensional. This means that only one person parameter,

namely e, is needed to determine the probability of a.correct response

to an item. McDonald (1981) points out that latent trait models can be

viewed as a nonlinear factor analysts model with only one factor (cf.

Mel1'engergh, 1981).

Another observation will be useful later. This is that if all the

items on an n-item test have the same item parameters (i.e., the same

values for a, b, and c) then (2:5) reduces to

f(Y(e), = lynipY(i
on -,y

.,the binomial probability function, where p is the common value of the

pi's.

(2.6)

Finally, for multiple choice items latent traitylodels do not deal

with the construct "knowing" in any way - they deal with the probability

of a correct.response which.is different from the probability of knowing.



3. Item Sampling Models

A third class of true score models is, known as item sampling models.

The binomial error model is the one most frequently used ;.'a recent review

is given by Wilcox (1981a), and so only its basic properties will be

given here.

Consider a single examinee responding to an n-item test. One situation
, -

leading to the binomial error model is where the n items are actually

sampled from some larger item domain. If F is the proportion of items

the-examinee would get correct if.every item in the item rpool' were-attempted,

then thstprobibility of y correct responses is

f(YIE) il;) Y(1 -

(It is assumed that sampling is from an infinite pool, or finite pool

with replacement, and aat'E remains constant over the *trials.) In

many situations items are not randomly sampled, and there is no item

pool. Thus, there is no a priori reason for assuming (3.1) holds. It

3.1)

might seem, therefore, that the binomial error model, is not really justified,

but the point is that (3.4) might give a good fit to data Indeed, the em-

pirical investigations Cited by Wilcox (1981a) suggesf that (3:1) will

frequently give good results when4raddressing various measurement problems.

Note that there is also no a priori reason for using latent trait models

(Lord 1980). Again Vie crucial question is whether the models give.good

results with.real data.

It might appear that the binomial error model is more restrictive

than latent trait models.in the sense that if the item parameters a,,b,

and c are the same for every item, the probability of y correct responses
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is given.by (2.6) which is the same form as (3.1). In particular,,one might

conclude that, in (3.1) and p in (2.6) are the same. They are related

but in a more complicated fashion.

:Typically, the n items on a test will have different values for a,

b, and c. Ifitems are really sampled from some item dolnain, the corres-.

ponding item parameters will have some distribution, say g(a,b,c).

Thus, for a randomly sampled item, the probability of a correct response

from a specific examinee with ability level 'e is,g = E(p(e)) where the

expectation is taken with respect to the random variablesa, b, and c.

That is, g=fff p(e) g(a,b,c) aadbdc.

,

To illustrate the practical implications of this result, consider a

criterion-referenced test where the goal is to determine whether an

examineess,percent correct true score E is above or below.the known

constant Is Is it possible to formulate the problem in.terms of a

latent trait model? In particular, how can a criterion score be found

(a value of so) that corresponds to If If the suggestion in Lore (1980,

p. 174) is followed, one might determine the criterion score to be the

value of e such that

ngo

mhere pi(e) = p(e,a4bbi,ci) is t,he item response function for the ith

item on an n-item teSt. Thn-point is that if a different set of items

were used with presumabl item parameterS, equation (3.2) would

/

yield a'different criterion score. Thus, this procedure yields, at best,

an estimate of,whric the criterion score would be if the problem were to

be reformulated in terms' of e0.

Observe.that nEo-is different from the true score used by Lord (1980,

p. 174). Lord is referring to aeexpected number-correct true score, but



the expectation is different froi

above.

equation (3.1), as was explained

/ lF

Does this mean that one model isbbetter than another? The answer

is an unequivocal no; the point isimhat they are not exactly the same, and

the choice of a model should depend on what an investigator wants to know.

Of course, some individuals might be dissatisfied. with both models.' In

terms of a criterion-referenced test, at least three alternative approaches

are possible. The 'first is 6 simply specify a passing score on a test

without any reference to some notion of true score. (See Huynh, 1976;

Subkoviak, 1976; Wilcox, 1979a.) The second is to take the view that

examinees' either know or do not know the answer to an item on a test, and

the goal is to determine which of the n items an examinee really knows.

The third view is that the items represent a larger domain of items, and

the goal,is to determine the proportion of items in the item pool that

the examinee knoWs. The latter two views are discussed below.

. Latent State.Models

Latent state models (also known as latent structure or latenteclass

models) have existed for some time (e.g., Lazarsfeld'& Henry, 1968;

Lazarsfeld, 1950). One of the original applications was measuring attitudes

(Stouffer, 1950), but only situations involving aptitude and achievement

are considered herb. Also there are continuous latent structure models

that are similar to latent trait models, but only discrete models are

discussed.

A basic premise in latent state models is that in terms of 'a

specific item, examinees can be, described. as belonging to one of
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finitely many states. The relative merits of this view are discussed

in a more general context by Hilke et al. (1977), Scandura (1971, 1973),

And Spada(1977).

The simplest case*sis where examinees are said to either know or not

know the correct responsebe obvious problem is that under conventional

situations, an examinee's respons ;might not reflect his/her true state.

For example; a testee might choose the correct respons, on a multiple-

choice test item without knowing what the correct response actually is.

-Latent state models make assumptions about the way examinees'behave when

responding to an item, or they.make assumptions about the way items are

,
related to one another (for example, it might be assumed they are hierarchi-

,

`cally related), or they assume that examinees respond to the same items

on two different occasions in time. Although very general models are

available, no one model will be appropriate for every item on every test.

An investigator must make a decision about which latent, state model is

most appropriate and most convenient in a given situation. Once test

scores are available, the chosen model-can be checked in various. ways.

For Multiple-choice items, it,now appears that One of two models wi ll

frequently fit most or all of the items on a test (Wilcox, 182b), If

future investigations support this:result it may now be possible to

apply latent state models in a relatively straightforward manner.

The purpose of this section is to, review general theoretical results
.

on latent state models that are based on one of the three assuniptions

mentioned above.



Test-Retest Models

As a simple illustration of how latent state models work, suppose

an item is administered to a random sample of N examinees On two separate;

occasions in time. Let be the proportion of examinees in the population

of examiness who know the answer, and let 0 be the, probability of correctly

guessing the answer when the examinee does not know. In other words, for

a randomly sample examinee

0 = Pr(correct responselvexaminee does not know)..

Let a 1 indicate a correct response, and a.0 an incorrect response to

anitem. If pis is the probability of the response Pattern ijoon

the two occasions (i=0, 1; j=0,1), if no learning takes pl'ace between

the two administratiOns, and if the event-of correctly guessing is

independeht on thetwo testings, the probability of a correct-correct

response patten for a randomly sampled examinee is

= 4 + 013
2

For the remaining three response patterns, it follows that

and

Pl 0
p01

(1 )

0

2

(4.2)

p00._
(1 °(1 (4.3)

The areare not khown but they can be estimated, with xis/N. where

x
ij

is the number of examinees who get the response pattern ij. It

follows that

POO'
=

P10 4. P00

Thus, the unknown-latent quantity 0 can be estimated by replacing the

pis s with xis/N. Note that the model implies that pAo ='pol which

can be tested (McNemar, 1947). Results on the powef/of McNemar's

test are given by Wilcox 09774. Also, note that with a large enough

sample the model will probably be rejected, but it may be that p.m

and
1

are nearly the same in_value.
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If a is the estimate of 0 using equation (4.4), c can be estimated

by replacing 0 with 0 in equgtion (4.1), replacing p 11 with x
11
/N, and

solving for Some properties of this estimation procedure are given

by Wilcox (1977a)c For examplejit is shown that if p is the common

value of p10 = p01 under the assumption the model holds, (x10 + x01)/N

is an unbiased, efficient, maximum likelihood estimateof p.

A related and slightly more general model was proposed by'Brownless

and Keats (1958). In addition to the latent parameters c and 0, the

model includes.the proportion of examinees who learn the item between

the two administrations, and the proportion of examinees who repeat le

same res'ponsefrom Memory on the second testing. Not all 'of the parameters

in the Brownless and Keats model can be estimated, but r and .B can again

be determined. For a similar model, see Marks and Noll.(1967).

The-Brownless and Keats model appears to be one of the earliest

attempts to go beyond the simple knowledge or random guessing model that

` is frequently adopted. Unfortunately, for practical purposes, the models

'just described are not convenient because they require two administrations

of,an item.

Models Based on Items That Are,,Assumed To Be Related

in Some PartizGlar Fashfon

This section reviews models where items are assumed to be related

in a particular fashion. Two situations have been examined in the"lit-

erature. The first is based on the assumption that two' or more items

are hierarchically related, and the second is that items are equivalent.

Two items are defined to be equivalent if all examinees know both items



or neither one. Of course models for hierarchically related items

contain models for equivalent items as a special case. Consider two

equivalent items and let be the proportion of -eXami,ness who'know both.

Letitilbe the p.robability_of the response_pattern ii_ontwo equivalent

items. If,B
1

is the probability of correctly guessing the response to

the first item when the randomly sampled examinee does not know, an4

if a, is the corresponding probability on the second item, and if local.

independence holds (i.e., given an examinee's latent state, the responses

are independent) then

p11 (1 Oala

Plo =: (F- ;)81(1 a2)

Pol (1 --;)82(1'- al)

p00 = (1 0(1 - B1)(1 -

Solvfng for al, and f32 yields

Plo

Pio + P00

Pio

P + p
01 00 .

)
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1
(P01 Poo)(Plo P00)11300

Again, the pig's can be estimated in the usual manner which yields an

estimate of 01,-ands02 (Wilcox, 1977b).

Multiple - choice items are the most obvicus examples where errors

at the item level (guessing) need to be considered. However, even when

completionitems_are used, it may be necessary to measure and correct

.errors at theitem level (e.g., Harris & Pearlman, 1978; Macready

Dayton1 977). This time-though, the quantity of interest is

= Pr(incorrect responselexiMinee knows),

and in the simplest case it is assumed that .0 = O. Again 4 and a. can,

be related to the p.
ij

's.. In particular

P11= (1 al)(1 a2)

1310-=
(1 a1)a2

P01 Cal°

POO Ca la2 + (1 )

Thus,.

al P01/(P01 )

a2 =1 P11/(1310

an

1) 1)(P10 +'1311) /1311

(



Replacing the pig's with their ususal unbiased estimate yields an esti-
.

mate of al, and dn. For some related'modelv and.resultt see Knapp
4

(1977), Harris and. Pearlman (1978), and Harris .et al, (1980).

If three or more equivalent items are available, it is possible to

estimate bdth 0 and a using .the procedure outlined by Goodman (1979),

or using the scoring method as in Macready and Dayton (1977),. These'
<"

two estimation procedures rely oniterative techniques that approxi-

mate.the maximum likelihood estimates of the parameters in the model.

In practice, these techniques seem to converge very rapidly, and so

sometimes they could even be applied when computer facilities are not

available (cf. Kale, 1962). However, models can become quite complex

necessitating computer facilities.

W
Itt.

Hopi the assumption two or more items are equivalent be
.

I

empirically checked ?' One Way is to apply a goodness -of- fit test to the

resultinglatent.structure model as'is illustrated by Macready and Dayton
o

(1977Y. :(For some recent results and comments on using goodness -of-fit.-

tests, see Smith et al., 1981; Koeler 8i.larntz, 1978; Chapman, 1976.)

However this approach is useless in the case of only two items (unless

it is assumed that 01 = 02 and a = 0) because there are then three

latent parameters and only four.possible response patterns resulting

in zero degrees of fmedom.



An alternative approach was suggested by Hartke (1978) that is

based on-latent partitionanalysis,-and an index proposed by Baker and

Hubert (1977) might be useful in this endeavor'as well.. If multiple-
.

choice test items are being used, and if the test is administered

according to an answer-until-correct scoring procedure (which is described

below), certain equalities are implied when items are equivalent, And

these equalities can be tested (Wilcox, 1981d). Some additional possibilities

are mentioned by Wilcox (1982f).

Hierarchically Related Items or Guttman Scales

Latent structure models based on the assumption that items are

hierarchically related or that the possible latent states form a Guttmanc,
scale, include as a special, case the notion of equivalent items. In

terms of equivalent items examinees are described as being in one of

--two states; they know both items or neither one For two hierarchically

related items, a third state is included, namely knowing the secohd

item but not the first.

of examinees

(closed form)

Agan, in certain special cases, the proportion

in each of the latent classes can be estimated using gimple

equations. Very general models are also available where

estimates are obtained via iterative techniques (Dayton 8 Macready, 1980 1976 ).

As a simple illustration consider two items.and:letc1 be the

proportion of examinees who know ihe second but uot the first.

If the guessing:rate is the same on the two items, i.e.., 01 = 62 =
F

say, then
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p11 = c; do (1 7 t.-

1010 = c1(1 0) + (1 - 4 - 41)0(1 0)

p01 = (1 4 )a(1 - a)

Poo (1 1)t32

It follows that.

P01/(P01 FOO)

41 (P10 " P01)/(1

= 1 - 0(1 - 0)-1P01

and so maximum likelihood estimates are easily obtained (Wilcox, 1980a).

This model is,restrictive in the sense that 01 = s2 might be untenable,

but much more general models are available Which allow 01 16- 02 (Dayton
'

& Macready, 1976, 1980).

Verifying Hierarchies

Interest in learning hierarchies has been with us for some time

(e.0. Gagne & Paradise, 1961; Gagn;, 1968, Cox & Grahman, 1968) but

here attentionjs focused only on the role latent structure models play

in verifying hierarchies. Apparently the first metho4f examining

whether two items are hierarchically related was prbposed by-White-

and Clark (1973). The procedUre.isbased on the assumption that for

each of the two items being investigated, an equiva ent item available.

The probability of the various response patterns can be written in terms

of the relevant latent parameters which yields a test of whether the

items are hierarchically related. Although White and Clark (1973) were

explicitly in1:erested in determining whether two items are hierarchically
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related, technically Ihey.were not the first to formulate a model that

could be used for this purpose.. In particular,, Proctor (1970) prOposed

.

a-latent structure model where the latent states of examinees are assumed

to form a Guttman scale.- A goodness-of4it test could be used to check

whether it is reasonable to assume items are,hierardhically.related.'

Today Proctor's model would presumably be replaced by ones proposed by

Dayton and Micready (1976, A980), and again a goodness-of-fit test could

be used. However, as was the case for equivalent items, there are situ-
.

atiOns where this is inappropriate. Again the problem is that there

are as many latent parameters as there are degrees,of freedom.

A third method is based on an answer-untilvtorrect'sioring procedure.

If two items are hierarchically related certain equalities, should hold

which, forconvenience, are destribed in a later section of the paper.

Some Concluding Remarks.on-LatentState Models for

Equivalent and Hierarchically Related Items
. .

Clearly there are situations where the notion of equivalent or

hierarchically_related items is too restrictive. This point was raised

by Moleniar.(1981),;And the authorUpuld certainly concur. However, :there:.

are situations involving real data wherethe.nOtion of-equivalentitems

seems to be:useful (Macready Dayton, 1977; Hatrisli Pearlman 1978)

.More recehtly,jiarris et al. 980) applied an equivalent item model, .

to real data:tollected:in schoOl settings. Illis was done every week

over a period of many weeks. All indications were;that;the test resUlts'

provided valuable and.Validjnformation. -Moreover, these models allow

a > 0 while the models described in the next section. assume a = 0..



Methods of. estimating the parameters in latent structure models were

already mentioned, and typically these are used. ,For some related,

results see Harris et al. (1980), Rao (1973), Wilcox (1977a,,1977b,

1980a, 1980b), Haberman (1972),.Werts et al, (1973), and van -derLinden

(1981).

For some related general results evd comments on latent structure

models, see McHugh. (1956), Keesling (1974), Bergan et al. (1980),

Reul'ecke 1977) Lazarsfeld and Henry'(1968), Gibson (1959 1962),

Goodman (1974), Green (1451), and Glluia (1979). For additional- comments

on how latent structure models relate to latent trait models, see van der

Linden (1918). For an approach to measurement problems that is 'somewhat

related to the discussionin thissubsection, see Cliff (1977) and

Harnisch and Linn (1981).

ti

Models Based on Assumptions Abdut How Examinees Behave

When Taking. Multiple=Choice Test Items

Despite the very general nature of the model discussed by Dayto

and MaCready (1980), and some recent related results reported by Macready.

-and,Bayton (1980a) and Bergan et a1. ('1980), there remainsthe...praCtical

,problem of initially determining:how items relate to.:One":anOthetso that _

a particular latent.$tructUre model can be tried Out-o4:ObsetvecLtest

scores . AnotherpOtenti S, that the :I tems on particular w-.1 tem

test might' not be OW stentisith 'any particular :forM7bt'tbe: model.' Fot4

practical purposes it .would be convenient to, have a model that could be

Used to ineasurethi effects of' guesting without assuming that items are

related in any particular fashion. It would 'alsO be heipfUl- if the

model were easy to use, . ., it could be used in a'alassroom, With minimal

effort A third desirable ited rst,:wOul
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be the ability to easily fit a simple model to all the items on an

arbitrarily'chosen n-item test. This last goal was reached in Wilcox

6982b). Before indicating how this was done, some earlier results

-will be given first.

''Suppose multiple-choice test items are scored according to an

answer-until-correct (AUC) scoring procedure. This means that examinees

choose an alternative, and they are told immediately whether they are

correct. One way to accomplish this is to have examinees erase a shield

on a specially designed answer sheet which is available commercially.

Underneath the shield is an indication of whether the examinee is correct.

If incorrect, the testee chooses another response, and this process con-

tinues until the correct alternative is identified.

,Unlike other _latent structure models, Wilcox (1981c) makes certain

assumptions about how examinees behave when responding to a multiple-
_ k

choice item, namely, that examinees eliminate as many distractors as

they can (through partial information) and then gues'skat/random from among

the alternatives that remain; This assumption is not new (e.g , Horst,

I

1933), but it.was not previously used in conjunction with latent state,

models. Undoubtedly this assumption-is an, over simplification of 'reality,

but it has 'proven to be consistent with most of the items, studied by Wilcox'

(1982a, 1982b, in press a)..

For a randomly sampled examinke-responding to a particular item,

c again be the probability the examinee knows the answers'And let t?

0211 p p t 2): be the Probability ,:the-e)caminee can eliminate i dis
.

_

.

tractors:if he/she does:net know, where is the number: of alternatives

the 'probability that a randomly seletted_examinee gets th'e,correct
_ . .

renonse on the ith-attempt of..an Item; then



t-2

131 4 + 4
-

and
t-i

Pi =

/ (t - 1)

It follows that = p1 - P2. Thus, if in a sample of N examinees xi

are.correct.on the ith attempt, then

(x1'- x2)/N

is an estimate of c.' The model implies that

P1 113 ?- Pt

and this. can be tested (Robertson, 1978). Empirital investigations

(4.6)

4.7.)

4.8)

4.9)

(.Wilcox, 1982a, 1982b) suggest that (4.9) will frequently hold.

Equation (4.9) rules out'the misinformation model proposed in Wilcox.

(1982b), but it is difficult to say whether testing (4.9) gives a strong

indication of whether the model hold's. Perhaps some other model could

be derived that explains existing data (e.g.-, Hutchinson, 1982). In ad-

:
dition -the random guessing tomponent of the model is undoubtedly untrue

(i.e.,-examinees guessing at random 'once they'elimlnateas-many dittractors

.as possible). , However, an impiridal investigation into an implication of

the random guesiing component of theinodel suggested that the model gives

a tolerable approximation of reality(Wilcoxv in press a). When this in -.

vestigation was conducted, it was .thought that a generalization of the

RUC model would be needed that takes into account'the order in which

distractors are chosen. So far, thoogfi it seems thit the simpler model

AeScribedaboVe will tUffiCe.
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The latent structure model just described implies that equation (4.9)

must hold for the population of examinees. In a few instances this assump-

tion appears to be unreasonable, and the question arises as to hot./ these

results might be explained. The solution-proposed by Wilcox (1982b)

,

is that some of the examinees have misinformation relative to the question

being asked. This appeared to be a reasonable speculation based on.the

r 1 .

way the questions were phrased;band so7amodification of the answer-until-

I

scoring procedure was proposed: For example, one'of these items,

dealt with the weight of iron after being heated. The examinees (who were

approximately 14 years old) were told that when heated, iron expands. They

were also told the weight lof the iron' before it was heated. They were

- I

then asked; what the weight of the iron would be when red hot. Three of

the alternatives were weights that were, higher than the weight at room

temperature. Thus, it seems reasonable that some examinees might believe

that iron is, heaiier because it expands, and they would therefore choose

among the three alternatives consistent with this belief.

In contrast to earl/ler models, if was decided to derive a ,latent

structure model,where examinees belong to one of three latent 'states

I

rather than only two, namely they know the answer they have misinfor-

mation as.just described, or they are in complete ignorance and guess at

random.. The resulting model gave a good fit to the data, and a similar

model was derived for the other item that did not fit the original answer-

until-correct model described above. The point that is partimilarly in-

teresting is that observed responses to all 30 items on the test could
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be explained with models that are very easy to use.

Despite the advantages 'of this model, there may be situations where

certain features are objectionable. For example, the model assumes that

an item has at 'east one effective distractor for those examinees who do

not know. Pi. other way,, it is assumed that no distinction is made be-

tween examinees who know, and those who can eliminate all of the distractors.

For practical purposes, the seriousness of this problem is not known. An-

other feature is that it assumes a.= Pr(incorrect responselexaminee knows)

= 0. Again the seriousness of this restriction is not well understood.

Q Some Miscellaneous Models

In addition to the models described so far, three slightly related

models have been proposed by Reulecke (1977). The first, which Reulecke

calls the Poisson-binomial model, assumes that examinees are respondirig

to.n equivalent items. For examinees who know, it is assumed that they

give an incorrect response to x items with probability hxexp(-h)/x!,

the Poisson density, where,h is an unknown parameter. For examinees

who do not know, it is assumed that 0 = His second model replaces

the assumption that 0 = .5 with the assumption that guessinglc items

given the examinee does not know. is un-xexp(-x)/(n-x) where u is an unknown

parameter. The third modei is the same as the last except that an

additional latent state is included,namely, thatfome examinees guess

at random.
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An alternative approach to measuririgmisinformation was proposed-by

Duncan (1974).' For a particular n item test;Nlet 6 be the number of

items an examinee -knows, and let 62 be the number of items for which the

examinee 'has misinformation. If every. item has t alternatives, Duncan

assumes that guessing is at random, and that the probability of getting

x items correct is

n 61 -

f(x161,62) =
((

62
6,-x
t

t-1
n-6

Both Bayesian and empirical Baye'sian estimates f 61r are discussed.

5. Applications of Latent Class Models, and the Need To dorrect

For Guessing

Latent class models can now be used to analyze items, analyze n-item

tests, and they can be used when an item sampling model " is deemed appro-,

priate. This section outlines the prOcedures that are available., The

. main advantages of these procedures are that they provide ways of dealing

with guessing that are not possible with other madels. But why worry about

guessing? Perhaps guessing will have little effect on the purpose of a

test. Of course answering this question is crucial in order -to- motivate

the procedures described here, and so a few comments will be mace along

these lines.

Let w be the proportion of items in a domain of items that an exam-.

inee *nows, and suppose the goal is to determine whether w>ca
0
for some

predetermined wo. This problem has received considerable attention in

recent years as'evidenced by the 1980 special issue of. Applied Psycholog-
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the test

c-,(0 J.tleas:

are reqt4'--
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Suppose w-
u
= .8, and that it is desired tb choose n,

so that the probability .of correctly determiming whether

.9 henever (1)4,9 or w<.7. From Wilcox (1980b), n=29 _

Van den Brink and Xoele.(1,980) pOinted.Oui that even

random gL rng can be assumed, about five or six times as many items

are needed to ensute the same level of accuracy as when there is: no guess.-

ing. Wilcox (1980b) noted that random guessing can not be assumed in which

case over 2,600 items are needed.

,As another illustration, Ashler (1979) observed that guessing can

seriously affect the. estimate of the biserial correlation._

A third reason to be concerned-about guessingis that it might be c,

impprtant to determine how many items on a test an examinee knows, or even
.

---whicri-tems-,-ar-e-known-and-wtrictrare-not:SurelyT-this-is-sometimes-impor-

tant when measuring achievement, but guessing can seriously affect the

results. An illustration with real data is giVen in Wilcox (1982d).

most solutions to measurement problems ignore guessing or .

assume guessing is at random.. Perhaps one of these assumptions will give

reasonable results in some situations, but all indications are that this is

not always the.case. In fact guessing seems to be more serious than might

at first be expected, and so it seems that'there.might be few measurement

is

problems where guessing canfie ignored. It might appear that certain latent

trait models handle guessing, but this is not necessarily the case because

the type of guessing examined, in latent class models 15 different from

the type of guessing in latent trait models. This. point is elaboftted in

Section 5.
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The way latent class model `are applied will depend in part-on

whether an item sampling view ts-believed to be appropriate, whether

operational versions of the test'are.to'be based :on conventional scor-

ing.or AUC scoring,,or whether items' can be assumed to be related in a

particular fashion.---1-1 conventional scoring is to be used, then pre-
.

liminary.investigations of a test might be made via AUC scoring to de-

termine-whi c h-ttems-are-parti cula rl y-affected_by_guessi rig ,_and_to_meas u re_

the overall accuracy of a specific n-item test. Methods for solvtng these

problems are outlined-below.

AnalYzing an n-Item Test

Consider_an_n-item test,

many items an examinee knows.

examinee knows if and only if

and suppose the goal is to determine how

Further suppose that it is decided an

the correct response is given. How accurate

is the test for the typical (randomly sampled) examinee?

Let Ti be the probability of making'a correct decision

about whether an examinee knows or does,not.know thelth item when a con-

ventional scoring procedure is used The parameter Ti IS easily estimated/

under an answer-until--correct scoring prd-ded&ei it-it-one-minus-theTp-roti-----7-

ability,of a correct 'responSe on the second attempt (Wilcox, 1981c). <A

natural_ way to Characterize an.n-item test is to use
.

T
S

= ET.

the expected number of correct decisions for a randomly sampled examinee,

who takes the test.

In some cases some additional related information s useful. Suppose,
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for example, there are n = 10 items', and Ts is estimated to be 7.° That

is, the expected number of items'for which a correct decision is.made

about'what an examinee knows is estimated to-be 7. To get a better in-

dication of how well the test i.perfor=ming it Would be useful toalso
. .

know the likelihood OL-say at'least 8'correctdeasions among 'the. n = 10

Ts does not yield much information about this value.

More generally, _let p be the probability of,making at least k

correct decisions among the n items about whether a typical examinee

`\, knows. Certainly.pk is a useful measure of how well a test indicates

what a typical examinee knows. If Ts or pk is"judged to-be too smajl,

'-the test needs to be modified in someway. For example, the number of

distracters might be increased, or perhaps the-existing 'distracters

might be improved.

The parameter pk can be expressed symbolically, and more' precisely;:

the following manner. Suppose it s decided that a testes knows the

answerto an item if and only if the correct respre is given on the

first attempt of the item. For a randomly sampled examinee ,let yi = 1

if a correct decision is Made about the-examinee's latent state on'the

ith itemi.otherwise yi = 0. Then

pk = Prgyi >k).

Wilcox (1981 -b, 1982f)

Of a test.,

refers to Pk as the
.

out of n reliability
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In classical test theory, the reliability of a test can be estimated

if two parallel forms exist. Of course, no two tests are ever exactly
,

parallel, and so bounds on the reliability are used instead. The best

*pown_bounds are theKuder-Richardson formulae. These boundS are expressed

in terms of unknown population parameters such as the difficulty level

of the items'on the test, and variance Of the test scores. Although

.these parameterS are not known, they can.be estimated. A similar situation
. _

.

-occurs--in-terms-ofeStimatlpgpIfi-ccanbeassmedthaty.iS- in-
k* 1

dependent.OfYic tJ, Pk couldibe.estimated (Wilcox,. 1982c),

However, there may be caseswhere this independence does not hold in

which-Case there is no method of estimating P 'However, both upper and
k

lower bounds on pk are available, and these can be estimated (Wilcox,

1982f, 19810. Even if yi and yi 'are independeat, estimating pk can
a

be a computationally tedious-procegt-iihen n is large, and so again

_ -
these bounds might be useful.

In the event yi and y.,are independent for all i and j, it is also

possible.to make inferences aboLit whether 0k is large on small (Wilcox,

1982c). Unfortunately, there is currently no empirical procedure

for determining when this independence might hold, and so some caution

should be exercised.

More recently, Wilcox (in press b) proposed an approximation of pk

that appears to Work well when n is small, say n < 5. For larger

values of n'the Bonferroni inequality canbe,applied as indicated by .

Wilcox.
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What To Do When T or pk is Too,Small

If the estimate of Ts or .Gk is, judged to be too small, two general-

-approaches are available% First, identify which items are seriously

affected by guessing, and either increase the number of distractors, or

attempt to improve the ones that are being used. The second approach is

\

to use a scoring procedure based on an AUC test proposed by. Wilcox

d.(1982e). However, the effectiveness of Wilcox's scoring procedure is not

known when thenumberof examinees is'sMall. An investigation into this

problem is underway.

If the first approach is selected, two measures are available for
.,

,deciding whether distractors for an item are working well. The first is

to use some Schur function (see Marshall and Olkin, 1979), such as

H(p2,
1 p

pt) If Pi ,ln

1 - p
1) 1

the entropy function'which measures how "far away" guessing is from being

random. H is also known as Shannon's measure of information or diversity

If guessing is at random, in which case the distractors have achieved their

maximum effectiveness,

P2- p3=
Pt

and H attains its maximum value. Its minimum value occurs when pi = 1 - p2

and P3 = p4 = =.pt = 0, in which case guetsing is as far awayfrom being.

random as it canbe.

WilcOx":(1981c) prOposed another measure Of.how well the distractor's

are performing: Labeled e,' it is just the ference between the Maximum

possible value of T (for fixed c) and the -actual value of T. An illustra-!

tion of:-the,o, measure is.liven in Wilcox (1982b).
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The entropy function measures the extent to which p2, p3, pt

are unequal; the closer the distractors are to being equal, the closer

is the item to' the ideal situation where guessing,is at random. H can

be estimated by replacing the withwith xi /N. This yields a maximum

likelihood estimate of H, say H, but the exact distribution of H is com-

plex and cumbersome to work with, and an asymptotic approximation of the

distribtition of H tends to be unsatisfactory unleis N is very large

(Bowman et al., 1971). Accordingly, itmight be convenient'to have some

other index that measures the extent to which P2, pt are unequal.

It turns out that a ,whole family of functions exists that have properties

similar.to H (Matshan & Olkin, 1979). One function that seems especially

convenient is Simpson's measure of diversity (Simpson, 1949). For the.

situation at hand it is given by
t

2
S [Pi/(1 -

i=2

Note that random guessirig can be tested ,py testing p2 p3 pt

(see Smith et al., 1981, iiilcox,1982el. But if the null hypothesis

is rejected, the real question is how far away the item is from random

gUessing,-and the measures S and H answer this question.

Alum and Mitra (1981) report some results on the distribution of

t£

which might be used to Make inferences about S but there is an error in

their results. Alain (1981) confirms the error, and a correction is in

preparation.
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Testing Whether Items are Equivalent or Hierarchically Related

The same model used to make inferences about pk can also be used

to test whether items are equivalent or hterarchically related. The

procedure can be briefly outlined as follows. For a randomly sampled

examinee responding to a pair of specific test items, let ;44
14

be the

probability of being able to eliminate i distractors from the first

item and j distractors from the second. The proportion\of examinees who

know both. items corresponds to
t:1,t-i

where t is still -the- number of

distractors. If pkm is the probability of a correct response on the

kth and mth attempt of the two items respectively, then under certain

mild indeperidence assumptions,

1 t-k t-m

Pkm 7 Jo ilo

If the two items are hierarchically related, then some of the ;ij's

must equal zero, which in turn means that some kr the pkm's will be

eqUal to one another, An illustration.is given in Wilcox (1982f).

These equalities 'can be tested in numerous ways yielding an empirical

check on whether the items are_hierarchically related.

Correcting. for Type II. Guessing

All of the applications that have been described are based on

what. Wilcox (1981c) calls Type I guessing. This just means that guess-

ing is defined in terms of a randomly sampled examinee respdnding to a



randomly sampled item._ Th t is, an examinees, guessing ability is

the probability of lying = correct response to a typical test item

that he/she does n t know The Situation is similar to the item

sampling mode4 described earlier, except that guessing is taken into

account. Rather than es imating E, an examinee 's percent correct

true score, the goal is o estimate w, the proportion of items in the

item pool that the examinjee knows.:

It is a simple matter to'adjust latent structure models developed

I :

inderType.I.guessing tol'the..iroblem of estimating wje.s.,

1979b -1.981c, 19824. Consider, for example,_an answer- until - correct

testa If, for a Specific examinee, w: is the probability that he/she

can eliminate i distractors from a randomly chosen item,_. then the probability

of getting an item corr/ect on the first attempt, is

t-2.
= w + i/(t - i)

i=0

and the probability -of a correct response on the second attempt is

SO

t -2

=.

.10
wi/(t -

=

w = q1 (12.

4

Thus, if:on an n-item test. there are zi items fOr which the examinee is

correct on his/her ith attempt, the estimate of w is simply

(zl 22)/n

Indeed, all of the results under Type I guessing are also available under

type Ii guessing.
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Should interest be directed toward determining which ,(or how many)

,:of the n items on a test an expminee knows, or toward estimating w,

o'f. both? Macready and Dayton (1977, 1980) argue that at least in some

situations, the former goal should. be sought, and that perhaps formulating

the goal of a test in terms'of w.should be avoided. It would seem that

the solution to th-ls: problem will depend on what exactly an investigator.

wants to determine, and of course this will vary from situation to

situation.

An advantage of estimating w with an answer - until- correct sawing,

procedur:e is that it,can substantially reduce the problems noted by

van den Brink and Koele (1980) and Wilcox (1980b) when trying to'deter-

mine whether w is above or below some known constant. This is one of

the problems mentioned at the beginning of this section. In situations

where an answer-until-correct scoring procedure can be used, there are

now two related solutions that might be adopted (Wilcox, 19829,

(1982d). The former approach is particularly well suited for com-

puterized testing where a sequential scoring rule can be used.

Strong True Score.Models

,
As previously indicated, the Type II guessing model untienithe answer-

until-correct procedure implies that w, the proportion''of items an
, .

examinee knows, is equal to qi - q2, where qi is the prObability of a

correct response on the ith attempt of a. Ily seleCted item. Undr"

a conventional. scoring procedure where an exam'nee pets only: one attempt

at item q1 is the examinee's percent:co ect true score. If for-a

populatiOn"of examinees .:tbe-dittribution of q could be determined,
I
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many practical measurement problems could be sol-red (Lord, 1965; Lord

& Novick, 1968, ch. 23; Wilcox, 1981a). The most frequently used approach
(

when estimating this distribution, say g(qi), is to assume that

g(ci ) r(r s) cir-10 xs-1

1 r(r) (s) 1 41 )

the beta density with parameters r > 0, and s > 0, and where r is the

gamma function. Empirical studies cited by Wilcox (1981a) indicate

that (5.1) will frequently give good results when addressing various

measurement problems.

Is it postible to develop a similar strong true score model that

(5.1)

takes into account the guessing ability of the examinees? Wilcox

(1981a) 'summarized results on several models that have been proposed,

and so they will not be discussed here. The important point is that all
0

of the strong true score modelskreviewed by Wilcox (1981a) now'appear to

be totally inadquate for both theoretical and empirical reasons. Some

of these models were based on the assumption that guessing is at random,

but recent empirical investigations indicate that this is highly unsatis-

factory (Wilcox, 1982a, 1982b). See also Bliss (1980) and Cross and

Frary (1977). Other models were based a multivariate analog of-the

beta-binomial distribution (the Dirichlet,multinomial) which allowed 0 to

vary over the population of examinees. This model implies that w and 0

are independent (Wilcox, 1981b) but this appears to be an unsatisfactory

assumption because the model gives a yeti, poor fit'to data.

Coombs et'al. (1956) suggested-that an examinee 's guessing ability

increases with the proportion of items he/she knows. Wilcox (1982a)

proposed a strong true score model based on this assumption and an an-

,

swer-until-correct scoring procedure under Type II 9uessing. Among, the
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several moliels that were considered, this was the only model that gave

reasona6le fit to the data. A more recent empirical study got similar

results (Wilcox, 1982b):

The model assumes (5.11holds, and_as already mentioned, this

frequently gives good results with real data. Let y = q2/0 - q1).

The model also assumes that ycin be written as an increasing function of

,which is given by

Y(q1) = c

ql
.1 1 si-

' -1

0 r(r.d r(s)
u (1 - u) ' du (t - )

where c, r > 0, and s l > 0 are unknown parameters that are estimated

from observed test scores. (The subscripts on r and s are used to

distinguish them from the parameters r and s used earlier.) A method

of estimating c, r and s1 is described by Wilcox (1982a).

This model. can be used to solve many measurement problems that were

previously impossible to solve., For example, suppose a conventional test

is administered, and it is desired to. correct for guessing without assuming

guessing is at random. If the-function y(q1),has been previously estimated,

then w = q1 --y(q/).. If y is arbitrarily set equal to (t - 1)-1 the
Fl

usual correction for guessing formula score results.

It should be mentioned that while it is possible to tpect.for

guessing tinder'oe answer- until- correct procedure, alternative scoring:-.

rules might be-preferred (Brown, 1965; DalrYmple4Iford,1970). These

scoring formulae do not estimate w, but instead give an examiner credit

for having partial,informatiOn. -Whether thitis desirable will depend

on the examiner's. goal.;0fcourset severalotherSCOringprocedUres have

been proposed, some of. which. ate,discusteclbrfrarill9801. The important

point isAhat nonej)f'thete

°

true of the proce4ure.prOposed by Gibbons, Olkin; and Sobel (1979) and

the rule'suggested by Austin OM:. Not tkof. ..,stin's procedure is the

same as one propos0-bSvArOld'and Arnold (1970 ) whiCh is by_

Frary
- (1980



Additiohal Applications

Several other applications of latent class models have been exam-

ined in the literature which are only mentioned-here. These include a

tailored testing procedure (Wilcox, in press b) that might be used

when computerized testing is feasible. Knapp.(1977) discusses a

a reliability coefficient that is based on a latent state point of view,

and Emrick (1971) describes how these models might be used to determine

the passing score of a criterion-referenced test. Emrick's estimation

procedure was shown to be incorrect (Wilcox & Harris, 1977), but this

problem is easily corrected.using one of the estimation procedures al..

ready described. A closed form estimate.of the parameters in prick's

model is given by van der Linden (1981).

6. Further Comments on How Latent Class and Latent TtZait'

Models are Related

In the three parameterlatent trait model given by.equation (2.4)7,

the parameter c'is sometimes called a guessing parameter.. Hopefully by

this point it can be seen that this parameter has nothing to do with the

notion of guessing used in latent class models. The parameter c is just

lim p(0). Thus, c refers to the probability of a correct response to

an item for'a particular type of examinee, namely, examinees for whom A

is small. For latent class models guessing is defined in terms of a

specific item and a population of.examinees who do not know, or a specific

exami'ee and a domain of items that he/she does not knowthis is differ.

;ent f om the population of examinees having e xmall. Suppose for oampli

`:!.
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p(e)-=1/2. Using the item sampling interpretation of p(e), this means

that among all the'items having item parameters a, b, and c, the prob-

abilit f a correct response is 1/2 for an examinee with ability level

e. put this suggests that the examinee does not know all of these items,

in which case some answers will be correct by chance. But hoW does the

parameter c correct this difficulty? The answer is that it doesn't deal

with this problem at all.

II

SOme writers have interpreted p(a) in.(2.4) as the-probability of know-

,
ihg an item which suggests. that latent trait'models might be related to

latent class models, but no simple relationship has been established when

errors-at the --item level.exist because the,models.measure different things..

In fact, if this interpretation is used, all estimates of the item para-
.

meters in (2.4) break down when multiple-choice items are used. To see

this, note that in order to estimate a, b, and.o, it would be necessary to

determine which items (or how many items)an examinee knows. But what is

observed is only which items were answered correctly. In some cases perhaps

this is not ,a serious problem--it seems that more work is needed in this

area. Mislevy and Bock (1982), as well as Wainer. and Wright (1980) have
,

given some attention to the problem of estimating latent'trait parameters/

in the presence of guessing. However, the model they used for guessing_
0

behavior is-different from the notion of guessing in latent class models.

To further differentiate the two aodels perhaps a,moie general

theoretical detcription of true score models will help. tirotnik and

Wilcox (1982) point out that certain notions in TOrgerSon (1958) can be 4

used to describe e model that contains as a special case all the true
.

score models described In this paper. Theirdevelopments are briefly
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Let p be some "ability" parameter that characterizes an examinee.

For a randomly sampled examinee, let pi(*) be the conditional probability

of a correct response to the ith item on an n-item test given that the

examinee has ability p. Let px(*) be the-conditional probability (given p)

of x correct responses, and let g(*) be,the probability density function

of * for the population of examinees. Then

Pi PiMg(*)d*

is the probabilityof a correct response to the ith item for a randomly

sampled examinee.

A basic problem is determining what * should represent. For a latent

class model, the sijnplest case is for a single examinee and a single' item

in which case the only two possible values_for p are 1. (the examinee knows)

or 0. (the examinee does not know). Then g(*),is the-proportion of examinees

---

who know. For the AUC model the possible values of * are °,1,.- .. t-1, and

pi (40-4t-10
-1 fora randomly sampled examinee. Note that for these models,

an-examinee's ability is defined in terms of a specific item, and this can

be used as A basis for defining ability in terms of the number of items

known on an n-item test, or the proportion of items known in an item domain,

FOr latent trait. models q, does not indicate what an examinee knows, but

rather, it determines the probability of knowing when there are no errors

at-the item level such as guessing. Another important point is that to

say the item parameter c is the same as the guessing parameter in the AUC

model is to somehow equate c to pi(*) given that *<t-1.

FOr/an item sampling model based on.a latent class model, *.is the

proportion of items in an item domain that an examinee knows,-04<1, and

Px Cilde(1-44n-x'
In latent trait models, the probahill.ty'of a correct

response to the ith item 'depends,on a, b, and c. "Thus,-as previously

for latent trait.models, pi (0=Eabc() where Eabc



means expectation with respect to a, b and c. Also

pi = IffIpi(Og(4),a,b,c) da, db, d

where g(lp, a, b,c) is the joint density Of ty, a, and c.

Concluding Remarks

. As was stressed at the beg:mning of the paper

that the other approaches to measurement (classical

it is not, being argued.

test theory, latent

traitmodels*, and item sampling models) be abandoned, or that they are

intrinsically bad in any sense. Its being argued though that careful

examination of the goal of a test should be made before a true score

model is chosen. Generally different models give'different solutions to

the same problem. For example, when determining how many distractors

should be used, latent trait models can be applied llord, 1980), but the

I /

criterion used is different from the one used in latent state models.

Another reason for choosing a model carefully is that some.writers

have argued that latent trait models do notaddress many of the measure

ment problems that are currently of interest (e.g., Baker, 1977).

primary point in this paper is that latent class models give the test

constructor ways of examining measurement problems that did not exist a

short while ago. By using'latent class models in conjunction with other

true score models, tests can be analyzed in a more effective manner than

ever before.
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in mental test theory a general goal is to use obser-
.

ved t:est L makE. .ofer]nces bout an unknown param-

eter e that represents an examinee's ability in a certain

area such as arithmetic reasoning, vocabulary, spatial

ability, etc. The parameter e is frequently called an ex-

aminee's true score. There are several types of true

scores [3], but because of space restriction' the differences

among them are not discussed. True score models are just

probability models that yield methods for estimating e

or making inferences about the characteristics of test.

The term strong true-score theory was'introdUced by-Lord

[2] to make a distinction between "weak" theories that.can

not be contradicted by data, and "strong" theories where

assumptions are made about the distribution.oftbserVed

test scores. Strictly speaking latent trait-models (alio

known as item response theories) fall within this defini-

. tion, but the term strong true-score model is usually re-

served for models based on the binomial probability function

or some related distribution. Apparently this is because

the main focus of Lord's paper was a model based on the

binomial probability function.

Consider a. single examinee responding to n didhoto-

mouslyscored items. As just indicated the best known

strong true-score mOdelTassUmes that the probability of x

correct reSponSe
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f(xle).-(r)Idex(4-e)n-x-

4

(1)

In addition to specifying a probability function for x, an

examinee's observed score, strong true-score models typel

cally specify a particular family of distributions for e

over the population of examinees. When (1) is assumed the

family of beta densities is commonly used where g(e), the

probability density function of e, is given by

r(r+s)_ r-1
(1 )

s-1
(2)g(e) 6 -6

r(r)r(s)

and where r, s>0 are unknown parameters. Estimates of the

parameters r and s are easily obtained with the method of

moments [6] and maximum likelihood estimates are available
F.

from [1]. Basically the beta-binomial model falls within

the realm of empirical Bayesian techniques, as do most

strong true-score models. The beta-binomial model frequent-

ly gives a good fit to data, and it provides a solution to

many measurement problems [6]. Included are methods of

equating tests and methods of estimating test accuracy and

reliability.

Several objections have been raised against the beta-

binomial model but from [6] the only objection that seems

to have practical importance is that the model ignores

guessing. Here a correct guess refers to the event of a

correct response to a randomly sampled item that the )(am-

inee does not know. For a-strong true-score model where ,a
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correct guess is defin d in terms of randomly sampled exark-

inees (and where items ar fixed); see [12] .

Suppose every item has t alternati'ves, and for a spe-

cific examinee let ; be the probability of knowing .a rand-
.

omly'sample item. Morrison and Brockway [4] assumed random

guessing in which case

e = c+t
-1

(1-4)

and the density of a is

g(8)= ttl g(V),

Unfortunately it appears that the random guessing assump-.

tion is unsatisfactory, The only model.that has given

good results is one proposed by Wilcox [8, 9] that is based

on an answer-until correct scoring procedure and the assumP-
.

tion that-an examinee's guessing ability is a monotonic

function of e. By an answer-until-correct scoring procedure

is meant that an examinee chooses responses to a multiple-'

choice test item until the correct alternative is chosen.

These tests are usually administered_by.hiving.an examinee

erase a shield on especially-designed answer'..shee4. Under'

the shield is a letter- ndicating whether the correct

answer was chosen. .If-hot,'another shield is erased, and

the process continues until the correct alternative is se-

lected:-

'Let be the. probability that an examinee can elimin-

_ _
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. .

ate i distractors "from a randomly sampled item, i=0,1,...,

t-1. It is assumed that when an examinee does not know,

there is at least one distractor that can not be eliminated
.

.

through partial infomation, and so = 4. It is also.

assumed that an examinee eliminates as many distractors as

possible, and then guesses at.random from among the alter-

natives that remain. For empirical evidente in support of

this last assumption, see [11]. If 0: is the probability

of a correct answer on the ith try of a randomly sampled

item, then

t-i
4i/(t-.1),

j=0

andsottle4.J 'scaribeestimated.. If xi is the number of

items requiring i attempts, it .is assumed that the xi's

have-a multinOmial probability. function. It 'is also

assumed that el has a beta density with parameters r and

and that
e-

h(u)du +
,

where c.is an unknown parameter, and 0J) is alSo a beta_

density but with parameters a and b: The model implies that

.0 >0 > >0
1- t

(4)

and so the lower limit for the integral in (3) should be

el but this modification hai not'yet been applied to.real

data. Equation (3) is based on the. assumption that the more
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'items an examinee knows, the higher the probability' will be

that an examinee will give a correct guess to an item that,

is not known. The parameters a, b and c are currently.es-

timated using what is basically the method of moments.- The

details are too lengthy to report here.; the interested

reader is referred to [8].

As a final ilote, there are now extension of strong

true -score models based on closed sequentiO1 sampling t

niques which might be useful in cor.wterized testi

closed seqUential sampling is meant that items are

sampled and administered until some criterion is met. The

criterion actually used will depend on the purpose of the

test.

Consider, for example, a criterion-referenced test

where the goal is to determine whether (>00 where 00 is a

known constant. Suppose e>e0 is decided if and only if

x>c, where c (a positive integer) is, some.known passing

score. Given that e>e
0

(or that e'<e
0
), the probability 'of

a correct decision is available immediately.(given e)

the binomiil model is assumed. Fortrelate4 resulis, tee 1161

Suppose instead that items are randomly sampled until

an examinee "gets c items correct or mr-i=t-1-4 items wrong.

Let x(y) be the number of correct (incorrect) responses: when

the sampling of.lii6s terminates. The jointrobabflilY
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function of x and y is

f(x,Yiel = L Cx+Y-1)1 ex(1-a)
xly!

..----
,

.

,where x=d..and 0<ykm-1 or where y=m and 0<x<c-1, and L=m

if y=m,otherwiseL.c. Wilcox [7] showed that the probabil-.

ity of a correct decision under the closed sequential pro-

cedure is exactly the same as iit is under the binomial
C.,

model, but the'expected number of items is always less.

For results on esti t' 6 under the closed secluential

procedure, see [13]. For extensions to the multivariate
\.

case, including an application to answer-until-Correct

tests,'see [14, 15].
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ABSTRACT
,

A simple approximation of a multivariate distribution is suggested

that may' be useful in certain situations. Comparisons with several

otherapproximations suggest that the new approximation nearly always

gives better results. In some cases the improvement is minimal, but

for some situations substantially better results are obtained.



Let X1,...,Xk be'k random variables with joint density f

-and let

P=Pr(X 011,...,X0hk)

Of course inmany situations (1.1) must be evaluated, .but frequently ap-

prOximations'are poor. In some cases P can be evaluated exactly using

quadrature techniques, but this can be prohibitively expensive, and the

'necessary computerprogramming does'not always. exist. The goal in this

paper is to suggest a simple approximation of Pthat appears to be useful

in.various situations, and which appears to compare favorably to some

other approxima&ns thatbave.been us d in the literature:

The proposed approximation is base on a second order Bahadur-approx--

imation of a multinomial distribution. he motivation for this approxi-

mation stems from a recent investigatio (Wilcox, 1983) which:in-
.,

cludpd, among other things, an approximation of Pr(Z yem),.where the

yi's are binary random fariables.. A second:order BahadurapprOximation

proved to be more accurate than expected, and this.led to the approximation

and comparisons made here:. Another motivation for this approximation

stems from results reported by McFadden .(1955). where it was suggested

that a special case of the approximation.used here will frequently give

good results for k=4.

In section 3 the accuracy of the approximation is investigated by

applying It to some distributions where R is known exactly for certain

special cases. The results suggest that the approximation nearly always ,

improves upon all four approximations of the multivariate t distribution
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,proposed by Dunnett and Sobel (1955). In a few instances the improvement

is substantial. It also appears to improve upon an approximation of the

multivariate normal distribution proposed by Olkin, Sobel, and Tong (1976).

Finally, the approximation is compared to,some percentage points tabled

by Dudewicz and Dalal (1975), and found to give good results in most cases

as long as k is not too large. Compared to the Bonferroni inequality,

there are again situations where thereis considerable improvement.

2. The Approximation

Let y=(y.1 ,...,yk) be a random vector, where yi=0 or 1 (i=1,. .,k),

and let p(y1,....ak) be the corresponding probability function. -Bahadur

(1961) showed that p(yi,...,yk) could be written as

where'

P(Y) = P
1
(Y)9(Y)

.

k yi

II a (1-ai
i=1 i

(Yi)

1-yi_

g(y) = 1+
iIj

ri4 iz4 +
i<

ri4mz
<

zi = (yi ai )/[a(1-ai )]1/4

rietE(zizj)

`rijiitagE(zizizin)

zizm +. r
12... kzl

2k
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An mth order approximation of gy) is obtained by retaining the first

m terms, in the expression for g(y). In particular, a second order ap-

proximation is

n_fv) [1+1 r..Z,Z.1
1J 1 J-

i<j

Define

4f X <h.

Yi

0, otherWise. / ,

-/.
Then an approximation of P is just

(

k Pr(Xi<hi,X <h )-Pr(X <hi )Pr(X <I1 ) (2.3)

i=1 1-

n Pr(x401 L
r

i<
X
i ii

Pr

2.'1)

(2.2)

In many practical situations Pr(Xi<hi) (i=1,...,k) have a common value V,

and Pr(X <h X
j
<h

j
) have a common value U for, all i#j, in which case

(2.3) becomes

2 6 112

Vk[1+

,

K

V2

Bahadur (1961) noted that the approximation (2.1) will be a probability

function if 11 r4;z4z4>0,-but that otherwise some of its values will
<jej.2 J.,

be negative. This problem neverarose in the cases considered here,
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3.1 The Multivariate t Distributions

Suppov the joint probability ciensity function of X ,... k is multi-

, variate normal with correlationmatrix {p }. mean vector 0 and common vari-

2 2 _ vante N and Wiley has a chi - square uuLlun inuepcnu=n1.. ul IA= X. J,

with v degrees,of-freedom, "Then the joint density of Ti;Xi/S (i=1..k) s

Multivariate t, and the joint pdf.(prObability density function) is

A1/2{r(o(1/2) [14.v71
. ..

al.j t tj.]-(v+k)/2

mik/2T(v/2)

where A is the determinant of the positive definite matrix faip=fpul

This distribution arises in ranking and selection (8pchnofer, Dunnett

-and Sobel, 1954) where the goal is to _determine which.:of +1 normal dis

tributions has the largest meAn. another application was discussed by

Dunnett (1955) where the goal is to compare themean of k normal distri-

butions to a control. -(See, also, Gupta. and Sobel, 1958.) Krishnaiah.

(1965) used the-distribution to.make multiple comparisons in the' multi-
.

variate analysis of variance. Properties of this distribution are summar-

ized by Johnson andKotz (T972) and Gupta (1963.

For k=2 exact expressions for (3.1) are available (Dunnett and Sobel,

1954), but for -1(>2 approximations must be used except for certain special

cases where exact results have been tabulated, An approximation was sug-
/

gesied by John (1961), bUt unfortunately it is.complicated, and some

quadrature isrequired. Four approxiMations (lower bounds) were proposed

92
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by Dunnett and Sobel--(1955). These'were

f -1-Pr(Ti>

k

Pr(T,h,)
i=1 1 I

k/2

Pr( T2i_

i=1

Pr(T2i<h i), k even.

"(k-1)/2
Pr(T

1
<h

1
) n Pr(T .<h . T .

21 21' 21+
-1=1

{Pr (T
1
<h, T2 <h)}

k / 2

(3..2)

(3.3)

(3.4a)

<11 ), k odd (3.4b)

The last lower bound assumes 1= 2=...=hk.h, say, h>0, and pipiAi

,

for sate constants x.
1
where 0<x <1 (i=1,...,k). Eilmession (3.4) also

3.5)

assumes that pii=k1Ai and that hi>0 (i=1,...,k). For pirpi Tong (1970).

givei-the 'lower bound

{Pr(T
1
<h, T

2
<h)-(Pr(T

1
<h))

21k/2
-

but'he shows that this bound is not as sharp as (3.5).

Dunnett and Sobel compared their lower bounds,to the actual P values

for the important special case 15=1/2 and-where .th4 hi's have a common value.

. .

h. For .v=0; and (1.1) close to one, their. tomparisons suggest that the

lower bounds' are reasonablyatcuratefor k =3, but for k=9 the accuracy

diminishes Oonsiderably. 1 They also examined_the case v.5. For k=3 the

approximations. were tolerable, but for'k=9 the approximations_were poor.

93



The approximation (3.5) consistently gave the most accurate results.

Table 1 shows the exact vaiae of h so that P=.59,- .95, .75, .50 for.

-k=3,9. These values were taken from Dunnett and Sobel (1955). Included

in the table are the values of h determined with (3.2) and (3.5) and (2.4).

As can be seen, (2.4) nearly always improves upon.both (3.2) and (3.5)
o

without making any assumptio0S about the structure of the correlation

matrix {Pip. For P close to one there is little improvement over the

other approximations, primarily because (3.2) and (3.4) give fairly ac-

curate results. As P decreases, though, (2.4) begins to give reasonably

more accurate results.
.*

Table 2 shows the approximation of P for v=5, k=3,9 and various

values of h. Again (2.4) nearly always, improves upon (3.2).and (3.5),

but unfortunately all three approximations are poor for k=9 unless P is

close to one. Also observe that (2.4) is substantially more accurate

for k=3 and P=.5.
9.

3.2 Approximating a Distribution Occurring in Ranking and Selection

Let Ti (i 01,...,p+1) be p+1 independent random variables all having

a Student's t distribution with v degrees of freedom, and let Wi=Ti-T101

The joint distribution of the Wi's arises in the ranking

and selection problem coniidered-by Dudewicz andDalal- (1975). Table 3

sherds the exact value of P (which was taken from the table in Dudewicz

andDalal) and the value of (2.4) for k=3,5; h=1,2,4 and V=1,14,29. The

valOe of (2.4) was determined using the tablein'DudeuiCz anCDalal... As

can be seen,:the approximation does not alwaysysork well-when, v=1, but

otherwiselitiiiies:reasohably accurateresylts. lable3alsorinfludes

an ipproxiMation based on the-Bonferroni inequality but

as is:evi-dent (2.4) Ai/et better results and inmost cases'the improve,
. ,

merit .4 substantial:_:



,3.3 Estimating the Probability of a Correct Selection in Ranking and

Selection

For the final comparison, let X1,...,X10.1 be k+I independent standard

normal random variables. Estimating the probability of a correct selection

in ranking and selection problems requires evaluating

-.(-Pr
X
1X --k+P-h1"."Xk-h+1Shk) (3.6)

Evaluating (3.6) also plays a central role in Tong (1978):

Olkin, Sobel and Tong (1976) suggest -a faMily of approximations of

(3.6) that are,Oased on milorization. To illuitrate the accuracy of their

'approximation they consider k=5, h1=3.2; h2=`2,7, h1=2.5, h4 =1.9, h5=1.7.

The exact value of (3.6)is .8016. The closest approximation (in absolute

value) based on their approach is .7802. If instead (2.4) is used,-wi

get .8171. ObvioUsly this one case is not a compelling reason to abandon

the approximation proposed by Olkin, Sobel andTong. It is difficult to

make extensive comparisons because the quantity approximated by Olkin et al.

is generally unknown. The point is that we nave one More example where

(2.4) gives good results.

Henery (1981) suggests another approximation of (3.6),-mhich we'

compared to some of the exact values in Bechhofer (1954). For k=3 it

1.

'worked reasonably well for P <.8, but unfortunately for P>.8 it gave very

pooNresults and so it was not considered further (cf. Sathe & Lingras,

1980;. Rice et al., 1979).

In some. instanceS the approximation (2.3)-will.give very accurate

Summary and Concluding Remarks.

resUlts, but as was iflustrated this is not always the case. However

it seems to usually Oveit\reasonable approximatiOn in most situations

when k.is nottOO'laiW MoreOver,At is easy to useiwhen the exact dis-.
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tributionJt known for k=2, and so it may be useful in certain situations.

More importantly, (2.3) appears to compare wably to various approxi-

mation that have beemproposed in,the past, and it can give considerably

better results when P is not too close to one. It is interestingLto*.

note that the Bonferroni inequality is known to dsually give (accurate

results when P As close to one; (2.4) genei-ally givds,an even better ap-

proximation in these cases, but the impruvement is not overly strikfng.

To'r distributions related to Student's t distribution, the compari-

sons made in Tables 1 and 2 suggest that (2.4) works tolerably welljor

k=5 and v, the degrees of freedom, as small as 14. For'k=3, (2.4) seems

to even work reasonably well for AJ=5. However, for k =9, all of the

d
.

--- .

.

.

approximations Considered here appear to be highly inaccurate except fo'r
, .

a few cases where P fsclote to one.
. . :

Finally, noanalytic'results were.given7.0n the accuracy of. (2.31,

but the Only analytic result concerning the other approXimitions is that

they provide bounds for P: In some instances these bonds can be extremeli°

Inaccurate, in which .case (2.3) Alight be considered. In fact, in.:terms

of obtaining accurate'apProximatIons, the only,motivation for:preferHng.

existing bounds is that they were invented first:,
..,

e
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TABLE 1

Comparisons for the Multivariate Normal Case of-Exact and

Approximate-Percentage Points, h, for Selected Values of P

.k=3

P (3.2) (3.4) (2.4) Exact (3.2)

.99 2.71 2.70 .69 2.68 3.06'

:.95 2.13 2.09 2.05 2.06 2.54

.75 1.38 1.26 1.16 1.19 10,1

.50 -.97 .70 .56 .59 1.59

TABLE 2-

k=9

(3.4) (2.4) IliExact.

3.0 2.97 3.00

2.51 2.29 2.4'4,

1.82 1.30 1.60

1.38 .85 1.04

Comparisons for the Multivariate. t of Approximate and

Exact P values for Selected Values of h, v=5

k=3

h (3.2) (3.4' (2.4) Exact

4.21 .987 t- .989. .990 .99

2.69 .931, .944
/

.954 .95\

1.32 .625 .721 .770 .75
. -

.62 .139 . .445 .515 .50

o
k=9

5:03 .987 .989 .998 .99

3.30 .903 .91,P .997
. .

.95

1.81 .415 .597 .944 . i .75

1.10 0 .269 .655 .50

97
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TABLE 3

eo

.Approximations of Values Tabulated by

Dudewicz and Dalai

Sonferroni

k=3

(2.4) Exact Bonferroni

k=5

(2.4) Exact

1 1 0 .422 .402 .325 .285.

14 1 .249 .552 :537 0 .483 .431

29 1 - .265' .559 .545 0 .491 .440"

1 2 ..250 .572 .541 0 .519 .414

14 2 .724 .806 .798 .540 .776 .726

29 2 .745 .818 .811 .575 .788 .743

1 4 .557 .743 .711 .262 '.750 .605

14 4 .983 .985 .98t . .980

U 4 .989 ..990 .990. .981 .986 .984

a

. 198
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ABSTRACT

Let]) be the proportion of'itemi within an item domain that an ex-

aminee
0

would answer correctly if every item were attempted. This brief

note proVides unbiasedAstimates of pt,.for any integer t, when a closed

s'equential testing 'procedure'is used.

0

'to



Consider'a single' examinee, 0 domain of items, and letT be the

examjnee's domain score or true score. .)That is, p is the proportion of

items. in the domain of items that the'examinee mould get correct if every

item were attempted. In some cases it is assumed that z, the number cor-

rect observed score, has a'binomial probability function, and that for

the population of examinees"the distribution of p belongs to the beta

family. This beta-binomial model has been used to solve many measurement

problems (Lord, 1965; Lord & Novick, 1968; Wilcox,i1981a).
. . _ ,,

Let p
0 0 .

be a known constant, 0<p <1. In criterion-referenced testing
. ,

%common goal is to determine for every examinee whether /0>p Usually

t is is done by administering n items to every examinee and deciding

p >p0 if and only if zin$pn. Wilcox (1981b) pointed out that it is 'possible

to improve uniformly on this procedure when computerized testing is fea-

sible., The procedure is based on a-closed sequential sampling scheme.

This means that items are sampled and Administered one at a time until

.

an examinee gets m items right or M ftemsvrong. In Wilcox,(1981b) m was

set equal to the smallest integer z such that z/n>po, and then M was set

equal, to n-m+1.

The purpose of this brief note is- to provide unbiased estimates of

pt for any integer t, 1<t<M. It is noted that. for t=1, an unbiased es-
\

/timate is easily derived from results in tiirshick et al;(1946).

After sampling terminates, let x be the number'of items the examine

answers correctly, and let y be the number for which an incorrect response
I

is given.. The unbiased estimate of pt is

104



Pt.

(- t - 1 + y // - n+ y , if x- =

m-t-1 m-1

fm
j

im + x-1)

x-t q4-1
, if = M.

where r+x-t =1 , if x<t.
x-t

To establish the above result, first it is noted 4hat from Wilcox (1981b),

the joint probability function of x and y is

1 + P111(1-P)Y,, if
m-1

f(x,YIP) = M- 1+ L m

m-i iP (1-p) f4=m.

M

Proceeding as as is done for the binomial case, it follows that E(0 )=p .

Henceforth, Pt' will 1:le written as P. when t=1. The maximum likelihood

- estimate of p is p
m
=x/(x+y). To gain some insight into how p and p ,compare,

selected values of t(P-P)2 and -E6m-P)2
were computed, and the results are

reported in Table 1. As can be seen, p generally gives more accurate re-

sults than pm.

Two situations are briefly noted where unbiased estimates of pt are

important. The first istesiimating the true score distribution. Suppose.

that for the population of examinees,, p has' a beta density given by

g(p) = r(r+s)/(r(r) Its )1pr-1( l_p)s-1 1)

where r,s>0 are unknown parameters. To estimate r and s, .let pi and pt

2
be the unbiased estimate of pi and pi, respectively, for the .ith randomly

sampled examinee, i=1,...,N. Proceeding as in Griffin and -Krutdhkoff

(1971), it follows that

ut
-1 t

= /Pi



3

can be us'ed to estimate E(pt), where the-expectation is taken with re-

spect to the beta,density. Thus,-r and s can be estimated as described

. in
N
Wilcox (1981a).

The second illustration has to do with the optimal linear estimator
"c_

of p. Because p is unbiased, the linear estimate, p, that minimizes

EpE (p -p)2 is given by'P=(al!,/a!)(13-111)+111 where a! is the variance of

2
the marginal distribution of x, ap = 112-2111 and lit=E(p

t
) (Griffin & Krutch -.

koff, 1971). From the results given above ap and pi can be estimated

yielding an estimate. of p (cf. Wilcox, 1978). .

0-0

O
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TABLE r

m

VALUE OF E(p-p)2 AND E(Pm-p)2

p: .1 :2 .;3

5 5 .0168 .0276 .0338

.0126 .0236 .0350

10 .0083 ..0143 .0198
.0076 .0170- .0271

.15 .0056 .0109 .0175
.0059 ..0154 .0236

5 5' 20 :0.044 .0098 .0171
.0053 .0144 ..0216

10 10 .0083 .0133 .0157

.0071 .0120 .0155

10 15 .0055 .0088 .0106
.0050 .0084 .0122

.4

.0368 .0376

.0448 .0489

.0256 .0307

.0326 '.0334

.0246 .0304

.0282 .0308

.04245 .0304
..0270 .0305

7;0162. .0162
.0190 .0208

.0122 .0141

.0157 ..0163

The first entry in every cell iiE(p-0) , and the second entry is

E(Pm-P)
2

1o&
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